State Space System Identification of 3-Degree-of-Freedom (DOF) Piezo-Actuator-Driven Stages with Unknown Configuration
نویسندگان
چکیده
Due to their fast response, high accuracy and non-friction force, piezo-actuators have been widely employed in multiple degree-of-freedom (DOF) stages for various nano-positioning applications. The use of flexible hinges in these piezo-actuator-driven stages allows the elimination of the influence of friction and backlash clearance, as observed in other configurations; meanwhile it also causes more complicated stage performance in terms of dynamics and the cross-coupling effect between different axes. Based on the system identification technique, this paper presents the development of a model for the 3-DOF piezo-actuator-driven stages with unknown configuration, with its parameters estimated from the Hankel matrix by means of the maximum a posteriori (MAP) online estimation. Experiments were carried out on a commercially-available piezo-actuator-driven stage to verify the effectiveness of the developed model, as compared to other methods. The results show that the developed model is able to predict the stage performance with improved accuracy, while the model parameters can be well updated online by using the MAP estimation. These capabilities allow investigation of the complicated stage performance and also provide a starting point from which the mode-based control scheme can be established for improved performance.
منابع مشابه
One-DOF Precision Position Control using the Combined Piezo-VCM Actuator
This paper presents the control performance of a highprecision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of...
متن کاملAdaptive Control of a Spin-Stabilized Spacecraft Using two Reaction Wheels and a 1DoF Gimbaled-Thruster
In impulsive orbital maneuvers, a large disturbance torque is generated by the thrust vector misalignment from the center of mass (C.M). The purpose of this paper is to reject the mentioned disturbance and stabilize the spacecraft attitude, based on the combination of a one degree of freedom (1DoF) gimbaled-thruster, two reaction wheels (RWs) and spin-stabilization. In this paper, the disturban...
متن کاملModeling and Identification of a 3-DOF Planar Actuator with Manipulator
The goal of this paper is to describe the identification and modeling of a 3-degree-of-freedom (DOF) platform with a manipulator on top of it, which is magnetically levitated by 9 voice-coil actuators. This 3-DOF experimental setup is a pre-prototype of a 6-DOF magnetically levitated platform with manipulator in order to study combined control of both the platform and manipulator.
متن کاملPID control with gravity compensation for hydraulic 6-DOF parallel manipulator
A novel model-based controller for 6 degree-of-freedom (DOF) hydraulic driven parallel manipulator considering the nonlinear characteristic of hydraulic systems-proportional plus derivative with dynamic gravity compensation controller is presented, in order to improve control performance and eliminate steady state errors. In this paper, 6-DOF parallel manipulator is described as multi-rigid-bod...
متن کاملAutomatic Landing of Small Helicopters on 4 DOF Moving Platforms
In this research, an automatic control system is designed for landing of a small helicopter on a 4 DOF moving platform. The platform has three translational and one directional degree of freedom. The controller design approach is based on development of helicopter nonlinear dynamic model into the SDC (State Dependent Coefficient) form and real time solving of state dependent Riccati equation (S...
متن کامل